Scalable MoS₂ phototransistors with ultra low power consumption and high light/dark current ratios

Xu Jing

Supervisor: Prof. Mario Lanza Institute of Functional Nano & Soft Materials 199 Ren-Ai Road, Bld. 910, Suzhou Industrial Park Soochow University, Suzhou, Jiangsu, 215123, China Email: ntjingxu@163.com Website: www.lanzalab.com

Outline

1-Introduction

- 1.1 Background1.2 Material selection1.3 Schematic of our devices
- 2- Fabrication and characterization
 - 2.1 Fabrication2.2 Output characteristic curves2.3 Transfer characteristic curves
- 3- Discussion and summary

1.1 Background

Technologies enabled by high-performance and thin-film transistors over the past 25 years.

A. D. Franklin, Science, 349(6249), abb2750 (2015)

X. Jing, M. Lanza* – Scalable Monolayer MoS₂ Phototransistors with ultra low power consumption

Slide 3 of 16

1.2 Introduction (material selection)

Many combinations of transition metals and chalcogens can yield the *three-atomthick* arrangement of a monolayer TMD.

increasing number of layers

B. Radisavljevic et al., Nat. Nanotechnol., 6, 147-150 (2011)

Chalcogen

Slide 4 of 16

1.3 Schematic

50 nm Au / 10 nm Ti MoS₂ SiO₂

X. Jing, M. Lanza^{*} et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032

 $MoS_2 \rightarrow CVD$ grown single layer Contacts \rightarrow Photolithography Channel \rightarrow W = 20 μ m, L = 40 μ m Single back gate (SiO₂ = 300 nm)

Our advantage is that we use CVD-grown MoS₂ and photolithography, meaning that (unlike exfoliated prototypes using electrodes patterned by electron beam lithography) our devices are scalable.

Li et al., Appl. Phys. Lett. 105, 093107 (2014)

Si

1-Introduction

- 1.1 Background
- **1.2 Material selection**
- 1.3 Schematic of our devices

2- Fabrication and characterization

- 2.1 Fabrication
- 2.2 Output characteristic curves
- 2.3 Transfer characteristic curves

3- Discussion and summary

2.1 Process of fabricating MoS₂ phototransistor

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032

X. Jing, M. Lanza* – Scalable Monolayer MoS₂ Phototransistors with ultra low power consumption

2.1 Optical and SEM images; AFM and Raman maps

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032

Slide 8 of 16

2.2 Output characteristics (W= 20µm)

As-fabricated

From literature

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032 Radisavljevic et al., Nat. Nanotechnology, 6, 147-150 (2011)

As it can be observed, <u>I_{DS} depends linearly on V_{DS}</u> and <u>the curves are quasi-</u> <u>symmetric with respect to the origin</u>, indicating the formation of Ohmic contacts between Au/Ti electrodes and the MoS₂ channel. <u>Our devices show typical FET behavior, as previously reported.</u>

2.3 Transfer characteristics (W= 20µm)

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032

The current of our sample under illumination is much higher than the current in the dark.

Our devices also show significant photosensitivity, as previously reported. The ratio at 0 V is 170, which is highest we can find from previous literatures.

2.3 Transfer characteristics (W= 20µm)

X. Jing, M. Lanza* – Scalable Monolayer MoS₂ Phototransistors with ultra low power consumption

Slide 11 of 16

Outline

1-Introduction

- 1.1 Background
- **1.2 Material selection**
- 1.3 Schematic of our devices

2- Fabrication and characterization

- 2.1 Fabrication
- 2.2 Output characteristic curves
- 2.3 Transfer characteristic curves

3- Discussion and summary

3.1 Comparison of results

Our samples	Li et al., Appl. Phys. Lett. 105, 093107 (2014)	Radisavljevic et al., Nat. Nanotechnology, 6, 147-150 (2011)	Late et al., ACS Nano, 6(6), 5635–5641 (2012)	Najmaei et al., Nature Materials, 12, 754-759 (2013)	Yin et al., ACS Nano, 6(1), 74-80 (2012)	L.S. et al., Nat. Nanotechnology, 6, 497- 501 (2013)
CVD grown single layer MoS ₂	7-8 layers exfoliated MoS ₂	Mechanical exfoliated (single layer)	CVD grown single layer MoS ₂	CVD grown (thickness unclear, seems to be single layer)	Mechanical exfoliated (single layer)	Mechanical exfoliated (single layer)
Contacts → Photolithography	Contacts → Electron beam lithography	Contacts → Electron beam lithography	Contacts → Electron beam lithography	Contacts → Photolithography	Contacts → Photolithography	Contacts → Electron beam lithography
Channel → W = 20 um , L = 40 um L/W ratio = 2	Channel → W = 1.5 um , L = 0.6 um L/W ratio = 0.4	Channel → W = 4.5 um , L = 1.5 um L/W ratio = 0.33	Channel → W = 2-10 um , L = 1 um L/W ratio = 0.5 to 0.1	Channel → W = 10 um , L = 100 um L/W ratio = 10	Channel → W = 2.6 um , L = 2.1 um L/W ratio = 0.81	Channel \rightarrow W = 2 um , L = 1 um L/W ratio = 0.5
Single back gate (SiO ₂ = 300 nm)	Single back gate (SiO ₂ = 320 nm)	Top gate (SiO ₂ = 270 nm)	Single back gate (SiO ₂ = 300 nm)	Single back gate (SiO ₂ = 285 nm)	Single back gate (SiO ₂ = 300 nm)	Single back gate (SiO ₂ = 270 nm)
At ambient environment / in the vacuum	A shielded probe station	A home-built shielded probe station	At room temperature in air	Under the vacuum		
Different illumination condition	No mention the light	No mention the light	under uniform white illumination (radiant flux density \sim 0.7 mW cm ⁻²)	No mention the light	Optical power of light = 80 μW	Illumination power is 0.15 mW
Ohmic contact	Ohmic contact	Ohmic contact	Ohmic contact			
	Mobility = 12.66 cm ² V ⁻¹ s ⁻¹		Mobility = 1.1 to 10 cm ² V ⁻¹ s ⁻¹	Mobility = 4.27 cm ² V ⁻¹ s ⁻¹		
I _{LIGHT} /I _{DARK} = 170			$I_{\text{LIGHT}}/I_{\text{DARK}} = 4$		$I_{\text{LIGHT}}/I_{\text{DARK}} = 1.75$	$I_{\text{LIGHT}}/I_{\text{DARK}} = 4$
$V_{DS} \times I_{DS under the}$ light = 3.25 $\times 10^{-9} W$			$V_{DS} \times I_{DS under the}$ light = 1.6×10 ⁻⁵ W		$V_{DS} \times I_{DS under the}$ light = 1.7 \times 10 ⁻⁸ W	$V_{DS} \times I_{DS under the}$ light = 3.0 × 10 ⁻⁶ W

X. Jing, M. Lanza* – Scalable Monolayer MoS₂ Phototransistors with ultra low power consumption

Slide 13 of 16

3.2 Origin of the small current: small domain size

The origin of the small currents in our devices (compared to the literature) is the role of the grain boundaries in the MoS₂

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032

0 50

100

150

200

Domain size (nm)

250

300

X. Jing, M. Lanza* – Scalable Monolayer MoS₂ Phototransistors with ultra low power consumption

Slide 14 of 16

350

 We successfully fabricated MoS₂ transistors only using scalable techniques (CVD + photolithography; no transfer process needed).

• The transistors show <u>ultra low power consumption</u> (3.25×10^{-9} W) due to the large density of grain boundaries in the MoS₂ (small domains, and large amounts of domain boundaries).

• The devices can also work as <u>photodetectors</u>. The <u>I_{Light}/I_{Dark} ratios (170) are larger</u> than those in the literatures, and they show to be stable over the time.

Scalable MoS₂ phototransistors with ultra low power consumption and high light/dark current ratios

Xu Jing

Supervisor: Prof. Mario Lanza Institute of Functional Nano & Soft Materials 199 Ren-Ai Road, Bld. 910, Suzhou Industrial Park Soochow University, Suzhou, Jiangsu, 215123, China Email: ntjingxu@163.com Website: www.lanzalab.com