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Technologies enabled by high-performance and thin-film transistors over the past 25 years.

A. D. Franklin, Science, 349(6249), abb2750 (2015)

1.1 Background
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A. D. Franklin, Science, 349(6249), abb2750 (2015)

Semiconductor1

Sizable energy band gap2

Band gap changes with 
increasing number of layers3

1.2 Introduction (material selection)

Many combinations of transition metals
and chalcogens can yield the three-atom-
thick arrangement of a monolayer TMD.

B. Radisavljevic et al., Nat. Nanotechnol., 6, 147-150 (2011)

Chalcogen

Transition metal
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50 nm Au / 10 nm Ti

1.3 Schematic

Our advantage is that we use 

CVD-grown MoS2 and 
photolithography, meaning 

that (unlike exfoliated 

prototypes using electrodes 
patterned by electron beam 

lithography) 

our devices are scalable.

MoS2 CVD grown single layer

Contacts  Photolithography 

Channel W = 20 μm, L = 40 μm

Single back gate (SiO2 = 300 nm)
Li et al., Appl. Phys. Lett. 105, 093107 (2014)

X. Jing, M. Lanza* et al., Nano Energy (2016) 
http://dx.doi.org/10.1016/j.nanoen.2016.10.032

Si

SiO2

MoS2
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2.1 Process of fabricating MoS2 phototransistor

First 
photolithography

E-beam
evaporation

Lift-off

Second 
photolithography

Plasma 
etching

Remove 
photoresist

X. Jing, M. Lanza* et al., Nano Energy (2016) 
http://dx.doi.org/10.1016/j.nanoen.2016.10.032
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2.1 Optical and SEM images; AFM and Raman maps

X. Jing, M. Lanza* et al., Nano Energy (2016) http://dx.doi.org/10.1016/j.nanoen.2016.10.032 

20 μm

20 μm

100 μm

2 μm
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2.2 Output characteristics (W= 20μm)

As-fabricated

As it can be observed, IDS depends linearly on VDS and the curves are quasi-
symmetric with respect to the origin, indicating the formation of Ohmic contacts 

between Au/Ti electrodes and the MoS2 channel.
Our devices show typical FET behavior, as previously reported.

Radisavljevic et al., Nat. Nanotechnology, 
6, 147-150 (2011)

From literature
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X. Jing, M. Lanza* et al., Nano Energy (2016) 
http://dx.doi.org/10.1016/j.nanoen.2016.10.032



Slide 10 of 16 X. Jing, M. Lanza* – Scalable Monolayer MoS2 Phototransistors with ultra low power consumption

The current of our sample under illumination is much higher than the current in the dark.
Our devices also show significant photosensitivity, as previously reported. 

The ratio at 0 V is 170, which is highest we can find from previous literatures.

2.3 Transfer characteristics (W= 20μm)

After annealingAs-fabricated
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After annealing, we also 
observe the scaling behavior of 

hysteresis (depending on the 
end voltage of the Vg ramp), 

similar to that in Li et al., Appl. 
Phys. Lett. 105, 093107 (2014)

Li et al., Appl. Phys. Lett. 105, 093107 (2014)
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3.1 Comparison of results

Our samples Li et al., Appl. Phys. Lett. 
105, 093107 (2014)

Radisavljevic et al., Nat. 
Nanotechnology, 
6, 147-150 (2011)

Late et al., ACS Nano, 
6(6), 5635–5641 (2012)

Najmaei et al., Nature 
Materials, 12, 754-759 

(2013)

Yin et al., ACS Nano, 
6(1), 74-80 (2012)

L.S. et al., Nat. 
Nanotechnology, 6, 497-

501 (2013)
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Mechanical 
exfoliated (single 

layer)

CVD grown single 
layer MoS2

CVD grown (thickness
unclear, seems to be 
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3.2 Origin of the small current: small domain size

The origin of the small currents in 
our devices (compared to the 

literature) is the role of the grain 
boundaries in the MoS2

After 5h annealing in the vacuum (0.57 torr)

SiO2 substrate

MoS2 channel

X. Jing, M. Lanza* et al., Nano Energy (2016) 
http://dx.doi.org/10.1016/j.nanoen.2016.10.032
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3.3 Conclusions

• We successfully fabricated MoS2 transistors only using 
scalable techniques (CVD + photolithography; no transfer 
process needed).

• The transistors show ultra low power consumption 
(3.25×10-9 W) due to the large density of grain boundaries 
in the MoS2 (small domains, and large amounts of domain 
boundaries).

• The devices can also work as photodetectors. The 
ILight/IDark ratios (170) are larger than those in the literatures, 
and they show to be stable over the time.
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